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Discrete wavelet transform power spectrum estimator
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A method for measuring the spectrum of a density field by the discrete wavelet transform~DWT! is studied.
We show how the Fourier power spectrum can be detected by using the wavelet function coefficients~WFC!
of the DWT. This method can successfully measure the power spectrum in samples for which traditional
methods often fail because the samples are finite sized, have a complex geometry, or are varyingly sampled.
We demonstrate that the spectrum features, such as the power law index, the magnitude, and the typical scales
can be determined by the DWT reconstructed spectrum. We apply this method to analyze the power spectrum
of the spatial distribution of the Ly-a clouds. The two popular data sets used for the spectrum detection have
quite different geometries and samplings, yet the one-dimensional~1D! power spectra and their 3D reconstruc-
tion given by the DWT estimator show the same features. The analysis makes clear that the DWT estimator is
a sensitive tool in revealing common and physical properties from diverse data sets.@S1063-651X~98!05603-7#

PACS number~s!: 02.70.Hm, 02.70.Rw
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I. INTRODUCTION

The power spectrum or its Fourier transform pair, the
tocorrelation function, are probably the most commonly us
techniques to detect structure in distributions such as ga
ies, photons, bacteria, hadrons, etc. Although the po
spectrum is only the lowest order statistical measure of
deviations of the random density field from homogeneity
directly reflects the physical scales of the processes tha
fect structure formation. Moreover, the positive definiten
of the power spectrum is useful for constraining the para
eter space in comparing predictions with data. As a res
the estimation of the power spectrum is often the first sta
tical description of a distribution attempted.

Even though there are a myriad of ways to estimate
power spectrum, efforts continue on developing new estim
tors for the spectrum. The main reason for this is that
traditional estimators have several weaknesses, espec
when dealing with samples that are finite sized, have a c
plex geometry, are sampled irregularly, or in which the me
density is uncertain or varying. We discuss these problem
more detail next.

It is well known that a classical spectrum estimator, t
Fourier transform of the autocorrelation function, depen
essentially on a good measure of the mean density@1#. A
two-point correlation analysis cannot detect any correlati
with amplitudes comparable to the uncertainty in the me
density. If the spectrum is determined via the two-point c
relation function, uncertainties on all the scales on which
correlation amplitude is comparable to the uncertainty in
mean density will occur. This problem is more severe
cases in which the mean density is changing with the siz
the sample. It is difficult, or even impossible, to accurat
determine the mean density in these distributions becaus
the finiteness in the sample size. This is sometimes called
infrared ~long-wavelength! uncertainty in the Fourier spec
trum estimator.
571063-651X/98/57~3!/3593~9!/$15.00
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If, on the other hand, the spectrum for a finite sample
estimated directly from the Fourier transform, this genera
only gives a convolution of the true power with the windo
function W(x), which is 1 inside the sample volume and
elsewhere. Because the basis functions of the Fourier tr
form are not orthonormal over a finite nonperiodic volum
the convolved spectrum depends on the shape of the sa
volume. In order to subtract the contribution of the windo
function to each Fourier mode, an estimation of the me
density of the objects is still needed.

Furthermore, the mean density is generally estima
from the sample itself. Therefore, the problem becomes m
serious when the sampling rate, or the object density, is
ferent for different samples. Forming an ensemble from s
samples in order to detect the spectrum becomes prob
atic. The effect of the finite size of the distribution cannot
eliminated because the Fourier basis is not localized.

This difficulty can be overcome by using the count in c
~CIC! technique or the Fourier transform on a finite doma
~the Gabor transform, for instance! @2#. The CIC detects the
variances2 of the density fluctuations in cubic cell window
with sidel or of Gaussian spheres with radiusRG . Since the
CIC variance is less dependent on the geometry of
sample volume, the behavior of the distribution outside
sample is not needed. This reduces the uncertainties ca
by finite sized samples. It is believed that the variance in c
l ~or sphere of radiusRG) is mainly given by perturbations
on scale; l ~or RG). As such the variances are considered
be a measure of the power spectrum on scalel @3#.

The problem with the CIC measure is that its basis fu
tions~windows! are not orthogonal with respect to scale. T
variancess2( l ) obtained from the cells at scalel contain
contributions from scales larger thanl . We will show that
this scale mixing becomes a serious problem when a po
law spectrum has a negative index~see Sec. II!. As a conse-
quence, the resulting errors are not easy to interpret bec
the errors for differentl are not independent.
3593 © 1998 The American Physical Society
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Thus, in order to effectively detect the power spectru
from samples in which the above mentioned problems oc
the basis functions for the spectrum should be orthogo
and localized in both physical and scale spaces. This m
vated us to explore the spectrum estimator based on the
crete wavelet transform~DWT! because its basis function
have just these properties@4–8#.

The basis of the DWT is constructed from two sets
localized functions: the scaling functions and the wave
functions@4#. To expand a function in a wavelet basis, on
the scaling function coefficients~SFC!, measuring the loca
mean density, and the wavelet function coefficients~WFC!,
measuring the differences between thelocal mean densities
at adjoining scales, are needed@8#. As a consequence, th
mean density on length scales larger than the sample si
not needed in calculating the WFC. Thus, aside from
additive constant, the wavelet spectrum~see Sec. II! will not
be affected by the uncertainty in the mean density.

The Karhuen-Loe´ve ~KL ! transform given by diagonaliz
ing the covariance matrix, then optimizing over the set
orthogonal transformations of the covariance matrix, is
other way to detect the spectrum that avoids the pitfalls
finite sized samples@9–12#. However, finding the KL eigen-
vectors of a matrix of orderf has computing complexity
O( f 3). In addition, the KL basis is not admissible. Even af
finding the eigenvectors of a data set, updating the basis
some extra samples will cost an additionalO( f 3) operations.
Finally, the KL transform is only available for second ord
statistics. On the other hand, the DWT can also quasidia
nalize the covariance matrix, and thus the KL transform c
be approximately represented by wavelets, which lead
less computing complexity@13,14#. More importantly, the
DWT can be generalized to higher order statistics@15#.

In Sec. II, we develop all the necessary formalism to
termine the power spectrum of a distribution using the DW
In Sec. III, we demonstrate the capability of the DWT
reconstructing power spectra of various types. In Sec. IV
an application of the DWT estimator, we detect the pow
spectrum for real samples of the Lyman-a ~Ly-a) absorption
clouds. We end with a discussion of our findings.

II. THE DISCRETE WAVELET TRANSFORM POWER
SPECTRUM

The use of the continuous wavelet transform~CWT! has
gained increasing importance in many fields in analyzing
texture of matter distributions. However, the machinery
will develop here to estimate the power spectrum is based
thediscretewavelet transform@16–21#. Unlike the case with
the Fourier transform, in which the discrete Fourier tra
form is just the continuous Fourier transform estimated fr
a discrete grid of points, the difference between the CW
and DWT is more fundamental. The DWT is not construc
by estimating the CWT at discrete points. That is, one d
not merely replace the integral with a sum and a continu
variable with a discrete variable. Generally, the basis fu
tions of the CWT are overcomplete and nonorthogon
whereas the DWT basis functions are complete and ortho
nal. Using the CWT can lead to correlations that are no
the sample, but due to the correlations among the wav
coefficients. The DWT allows for an orthogonal projectio
r,
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on a complete set of modes and thus, the wavelet coeffici
are independent.

A. The power spectrum

Let us consider a one-dimensional random density fi
r(x). It is not difficult to extend all results into two and thre
dimensions. In studying structures in a density field, it
convenient to use the density contrast~or perturbations! de-
fined by

e~x!5
r~x!2 r̄

r̄
, ~2.1!

where r̄ is the mean density of the field. The Fourier expa
sion of e is

e~x!5 (
n52`

`

enei2pnx/L ~2.2!

with the coefficients given by

en5
1

LE0

L

e~x!e2 i2pnx/Ldx. ~2.3!

Parseval’s theorem relates the power for a distribution
the coefficients of the Fourier expansion. For the dens
contrast this yields

1

LE0

L

ue~x!u2dx5 (
n52`

`

uenu2, ~2.4!

which shows that the perturbations can be decomposed
domains,n, by the orthonormal Fourier basis functions. T
power spectrum of perturbations on the scaleL/n is then
defined as

P~n!5uenu2. ~2.5!

We proceed similarly using the DWT basis functions. T
subject a finite sample of extent 0,x,L to a DWT expan-
sion, we define a density distributione(x) that is equal to the
sample in the region 0,x,L, and is L periodic on
2`,x,`. The wavelet expansion ofe(x) is @8,16#

e~x!5(
j 50

`

(
l 52`

`

ẽ j ,lc j ,l~x!, ~2.6!

wherec j ,l(x) is the wavelet function, defined as

c j ,l~x!5S 2 j

L D 1/2

c~2 j x/L2 l !. ~2.7!

The real functionc(h) is called the generating wavelet an
is localized in the interval 0<h<1 and centered ath51/2.

Equation~2.7! shows that the wavelet functionsc j ,l(x)
are families of functions constructed by dilating the gener
ing function c(x/L) by a factor of 2j , and by translating
c(x/L) by l . The wavelet functionsc j ,l(x) are thus on scale
L/2j and are centered atlL /2j . Furthermore thec j ,l(x) are
orthogonal with respect to both indices, that is, thec j ,l(x)
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57 3595DISCRETE WAVELET TRANSFORM POWER SPECTRUM . . .
are orthogonal to both translation and dilation. The wave
function coefficients~WFC!, ẽ j ,l , in Eq.~2.6! are simply the
inner product

ẽ j ,l5E
2`

`

e~x!c j ,l~x!dx. ~2.8!

The limits of the integral here are formally2` and `. In
practice,e(x) only in the intervalL/2j centered atlL /2j is
needed to calculateẽ j ,l becausec j ,l(x) is localized.

Finally, Parseval’s theorem for the DWT can be shown
be @8#

1

LE0

L

ue~x!u2dx5(
j 50

`
1

L (
l 50

2 j 21

u ẽ j ,l u2. ~2.9!

The existence of Parseval’s identity for the DWT strong
suggests that the second order statistical behavior ofe(x)
can be completely described by theu ẽ j ,l u2, i.e., the DWT
power spectrum. Comparing Eqs.~2.4! and ~2.9!, one can

relate (1/L)( l 50
2 j 21u ẽ j ,l u2 to the power of perturbations o

length scaleL/2j , andu ẽ j ,l u2/L to the power of the perturba
tions on scaleL/2j and positionlL /2j . Thus, the power spec
trum with respect to the wavelet basis should be defined

Pj5
1

L (
l 50

2 j 21

u ẽ j ,l u2. ~2.10!

B. Relationship betweenen and ẽ j ,l

Both the DWT and Fourier basis functions are compl
so it is possible to express the WFCẽ j ,l in terms of the
Fourier coefficientsen , and vice versa. Substituting expa
sion ~2.2! into Eq. ~2.8! yields

ẽ j ,l5 (
n52`

`

enE
2`

`

ei2pnx/Lc j ,l~x!dx5 (
n52`

`

enĉ j ,l~2n!,

~2.11!

whereĉ j ,l(n) is the Fourier transform ofc j ,l(x), i.e.,

ĉ j ,l~n!5E
2`

`

c j ,l~x!e2 i2pnx/Ldx. ~2.12!

Using Eq.~2.7!, one can rewrite Eq.~2.11! as

ẽ j ,l5 (
n52`

` S 2 j

L D 1/2

enE
2`

`

ei2pnx/Lc~2 j x/L2 l !dx.

~2.13!
t

o

s

e

Letting h52 j x/L2 l gives

ẽ j ,l5 (
n52`

` S 2 j

L D 21/2

enei2pnl/2jE
2`

`

ei2pnh/2j
c~h!dh

~2.14!

or

ẽ j ,l5 (
n52`

` S 2 j

L D 21/2

enĉ~2n/2j !ei2pnl/2j
, ~2.15!

whereĉ(n) is the Fourier transform of the generating wav
let c(h)

ĉ~n!5E
2`

`

c~h!e2 i2pnhdh. ~2.16!

Equation~2.15! is the expression for the WFC in terms of th
Fourier amplitudes.

Similarly, it is possible to express the Fourier coefficien
en , in terms of the WFC as

en5
1

L(
j 50

`

(
l 50

2 j 21

ẽ j ,l ĉ j ,l~n!, nÞ0 ~2.17!

or

en5(
j 50

`

(
l 50

2 j 21 S 1

2 jL
D 1/2

ẽ j ,le
2 i2pnl/2j

ĉ~n/2j !, nÞ0.

~2.18!

Equations~2.15! and ~2.18! show that, in principle, the in-
formation contained in each transform is equivalent.

C. The wavelet spectrum estimator

We now look at the wavelet power spectrum defined
Eq. ~2.10! in more detail. The first thing to note is that th
wavelet functions,c j ,l(x), are localized in Fourier space. Fo
instance, the Fourier transform of the Battle-Lemarie´ wave-
let, which is constructed with fourth order spline functions,
nonzero only in two symmetric narrow ranges centered,
spectively, atn511 and21 with widths Dn!1. For the
Daubechies 4~D4! wavelet, ĉ(n) also has two symmetric
peaks centered atn56np (np.0) and of widthDnp . The
sum overn in Eq. ~2.15! need only be taken on the tw
intervals (np20.5Dnp)2 j<n<(np10.5Dnp)2 j and 2(np
10.5Dnp)2 j<n<2(np20.5Dnp)2 j . Equation ~2.15! can
be approximately rewritten as
ẽ j ,l.S L

2 j D 1/2F ĉ~2np! (
n5~np20.5Dnp!2 j

~np10.5Dnp!2 j

enei2pnl/2j
1ĉ~np! (

n52~np10.5Dnp!2 j

2~np20.5Dnp!2 j

enei2pnl/2jG
5S L

2 j D 1/2

(
n5~np20.5Dnp!2 j

~np10.5Dnp!2 j

@ĉ~2np!enei2pnl/2j
1ĉ~np!e2ne2 i2pnl/2j

#. ~2.19!
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Equation~2.19! shows that the WFC on scalej are mainly
determined by the Fourier componentsdn with n centered at

n56np2 j , ~2.20!

wheren56np are the positions of the peaks ofĉ(n).
Because bothc(x) and e(x) are real, we haveĉ(2np)

5ĉ* (np) ande2n5en* . Equation~19! then becomes

u ẽ j ,l u2.
L

2 jU2 (
n5~np20.5Dnp!2 j

~np10.5Dnp!2 j

Re$ĉ~np!enei2pnl/2j
%U2

.

~2.21!

In the case of Gaussian perturbations, the distribution of
phases ofen is uniformly random, and Eq.~2.21! reduces to

u ẽ j ,l u2.
L

2 j 21
uĉ~np!u2 (

n5~np20.5Dnp!2 j

~np10.5Dnp!2 j

uenu2. ~2.22!

According to the central limit theorem, the distribution
en will be Gaussian if the density field is a superposition
non-Gaussian perturbations@22#. Therefore, Eq.~2.22! also
holds for many kinds of non-Gaussian perturbations. For
stance, if the density field consists of a large number of r
domly distributed non-Gaussian clumps, the Fourier am
tudes, en , will be given by the superposition of a larg
number of non-Gaussian contributions. The central lim
theorem then guarantees that theen will be Gaussian, and
that the phases ofen will be uniformly randomly distributed.
Even when the clumps are correlated, the central limit th
rem still holds as long as the two-point correlation functi
of the clumps approaches zero sufficiently fast@23#.

Moreover, many physically interesting density fields a
assumed to be ergodic, that is, the average over an ense
is equal to the spatial average taken over one realization
homogeneous Gaussian field with a continuous power s
trum is certainly ergodic@22#. In some non-Gaussian case
such as homogeneous and isotropic turbulence@1#, ergodic-
ity also approximately holds. Roughly, the ergodic assum
tion is reasonable if spatial correlations are decreasing s
ciently rapidly with increasing separation. The volum
separated with distances larger than the correlation length
approximately statistically independent. This property c
effectively be used by DWT because thec j ,l(x) are orthogo-
nal with respect to the position indexl . The 2j wavelet co-
efficients for a givenj are statistically independent and th
ẽ j ,l can be treated as independent realizations. That is
ergodic random fields the WFC form a valid statistical e
semble on scalej . This ensemble is very useful.

In standard Fourier techniques, it is known that if t
density fluctuation field is a homogeneous random proc
the average of the Fourier amplitudes over anensembleof
fluctuation fields with finite extent~zero outside! will be the
same as that over a fluctuation field of infinite extent@22#.
Unfortunately, no such ensemble is available if there
only a few ~or, as in cosmology, only 1! realizations. How-
ever, because of the locality of the DWT basis functio
ensembles are generated at each scale with the DWT de
position.

Using Eqs.~2.5! and ~2.10! in Eq. ~2.22! gives
e
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P~n! j.
1

2 j 11Dnp

uĉ~np!u22Pj . ~2.23!

P(n) j is the average of the Fourier spectrum on scalej given
by

P~n! j5
1

2 jDnp
(

n5~np20.5Dnp!2 j

~np10.5Dnp!2 j

P~n!. ~2.24!

Equations~2.23! and ~2.24! are the basic formulas relatin
the Fourier power spectrum to the DWT power spectrum

One can also measure the power spectrum of the distr
tion by using the variance of theẽ j ,l as

P~n! j.
1

2 j 11enp

uĉ~np!u22Pj
var ~2.25!

and

Pj
var5

1

L (
l 50

2 j 21

~ ẽ j ,l2 ẽ j ,l
2, ~2.26!

where ẽ j ,l is the average ofẽ j ,l over l . Because the mean o

WFC ẽ j ,l is zero @Eq. ~2.15!#, Pj is statistically equal to
Pj

var.

D. Comparison of DWT spectrum estimator to the CIC

To demonstrate the advantage of a basis function tha
orthogonal to scale we compare the DWT spectrum esti
tor to the CIC technique. The most direct way of describi
the differences between the two is by noting that the cu
cell of the CIC corresponds to a window of the form

f~h!5H 1 if 0<h,1

0 otherwise.
~2.27!

The corresponding basis function is

c~h!5H 1 if 0<h,1/2

21 if 1/2<h,1

0 otherwise.

~2.28!

This is the lowest order Daubechies wavelet, known as
Haar wavelet whose Fourier transform is

ĉ~n!5
2

pn
@sin~pn!2 icos~pn!#sin2~pn/2!. ~2.29!

Whenn!1, ĉ(n);2 i (p/2)n. Therefore, Eq.~2.29! is not
localized in Fourier space. In the case of a power law sp
trum, en5Kng, Eq. ~2.15! gives
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ẽ j ,l5 (
n,2 j

S 2 j

L D 21/2

enĉ~2n/2j !ei2pnl/2j
1terms n>2 j

5 (
n,2 j

S 2 j

L D 21/2 ipA

2 j 11
n11gei2pnl/2j

1terms n>2 j .

~2.30!

The square averageẽ j ,l , or similarly the CIC on scalej will
be contaminated by perturbations on scales larger thanj , and
the Haar wavelet WFC~or CIC! on scalej will no longer be
a good measure of spectrum on scalel .

III. SPECTRA RECONSTRUCTION

A. A simple example: Power law spectra

We now demonstrate the ability of the DWT spectru
estimator, i.e., Eqs.~2.23! or ~2.25!, to reconstruct power
spectra. We first consider a power law spectrum given
P(k);kg. From Eqs.~2.23! and ~2.24!, we have

P~n! j 1152gP~n! j ~3.1!

and

Pj}2 j ~g11! ~3.2!

or

log2Pj5~g11! j 1const. ~3.3!

The slope of log2Pj , when plotted againstj , is g11. The
index of a power law can be directly detected by

g5
dlog2Pj

d j
21. ~3.4!

Figure 1 shows a DWT reconstructed power law sp
trum. The random density field is generated from pertur
tions with powerP(k)5k22, wherek[2pn/L is the wave
number in length units. The sample is distributed ov
295512 bins. Figure 1~b! shows the spectra log2Pj and
log2Pj

var plotted againstj . The points of log2Pj
var in Fig. 1~b!

have been shifted down to log2Pj
var21 for presentation pur-

poses only. As expected, Fig. 1~b! shows~1! Pj is equal to
Pj

var and~2! the slopes of the lines log2Pj vs j or log2Pj
var vs

j are equal to21, giving a spectral indexg522. The 1s
error bars are for 100 realizations.

B. Normalization factors

In the previous section the spectrum index of a power
was measured. It is equally important to estimate the am
tude of the power spectrum, logP(k)j , from logPj . This can
be done from Eq.~2.24!, which gives

logP~k! j5 logPj2~ log2! j 1A, ~3.5!

where

A52 log@2Dnpuĉ~np!u2#. ~3.6!
y

-
-

r

li-

If A is known, logP(k)j can be found from logPj . A normal-
izes the wavelet amplitude to the Fourier amplitude and
dependent on the choice of wavelet. In the case of the
wavelet,A50.602.

From Eq.~2.20!, we have

logk5~ log2! j 2 logL/2p1B, ~3.7!

where

B5 lognp . ~3.8!

B normalizes scalej to logk. For the D4 wavelet basis
B50.270. Equations~3.5! and ~3.7! transferPj or Pj

var into
the mean Fourier spectrumP(k) j , andvice versa. There is
no particular reason to normalize the DWT estimator to
Fourier power spectrum. However, we do so here to confi
the results obtained using the DWT estimator with the w
established Fourier methods and to relate the wavelet s
parameterj to the Fourier wave numberk, which has a better
understood physical interpretation.

FIG. 1. Reconstructed power spectrum for a distribution gen
ated from a power lawP(k)5k22. ~a! Reconstructed spectrum
from FFT detection, and~b! reconstructed spectrum from the DW
estimator, wherek52pn/L is the wave number in a length uni
The points of log2P

var ~star! in ~b! have been shifted down to
log2Pj

var21 for clarity of presentation only. The slopes of the lin
log2Pj2j ~diamond! or log2Pj

var2 j are 21, indicating a spectral
index of 22.
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3598 57JESÚS PANDO AND LI-ZHI FANG
To test these normalizations the following spectrum w
used:

P~k!5
k

11105k4
. ~3.9!

This has a peak at logk;21.37, or a typical scale 1/k523.4
~length! units. Using Eq.~3.9!, samples of lengthL were
generated into 256, 512, and 1024 bins. The reconstruc
of the spectrum is shown in Fig. 2. The peak and the am
tude of the power spectrum are perfectly detected by
DWT. Either Pj or Pj

var can effectively provide information
on the shape of the spectrum as well as its amplitude.

C. Boundary conditions

The WFC measure fluctuations from thelocal mean den-
sity. This locality property allows theẽ j ,l to be independen
of data outside an ‘‘influence’’ cone. That is, ifc is well
localized in the intervalDx, then the wavelet coefficient

FIG. 2. Reconstructed spectrum for a distribution genera
from Eq. ~3.9!. k52pn/L is the wave number in length units. Th
dotted line is the theoretical curve and the diamond points are
DWT determined spectrum. The samples in~a!, ~b!, and ~c! are
generated in~a! 1024,~b! 512, and~c! 256 bins, and the bin size i
2p length units. The peak of the spectrum is at logk521.37.
s

on
i-
e

ẽ j ,l , corresponding to positionx0, will only measure fluc-
tuations in the interval@(x02Dx)/2j 11,(x01Dx)/2j 11#
@16#. As a result the DWT spectrum estimator is less sen
tive to boundary conditions.

To test this point, spectrum~3.9! was used to generat
samples over a finite lengthL in 512 bins. Two different
boundary conditions were studied:~A! periodic boundary
conditions;~B! zero padding. Figure 3 shows the results
reconstructing the power spectrum from distributions gen
ated using these boundary conditions. The results show
the spectrum can be correctly reconstructed by the D
regardless of the boundary conditions.

A similar test is shown in Fig. 4, in which the densi
distribution over 512 bins is generated from a power l
spectrumP(k)5k22, and then the last quarter bins set
zero. When the spectrum is determined using the fast Fou
transform~FFT!, the usual procedure is to convolve the Fo
rier coefficients with a window function. The spectru
shown in Fig. 4 was computed using a trianglelike windo
function. The spectra are reconstructed with window sizes
8, and 16 bins, and the power law index is found to
21.73, 21.93, and 22.14, respectively. As shown, th
power law index from the FFT reconstruction sensitively d
pends on the window size even within a specific choice o
window function. The ‘‘arbitrary’’ selection of the window
size leads to an uncertainty in the index. On the other ha
for a given wavelet, there is no arbitrariness in the select
of the window size. The wavelet basis functions on vario
scales are constructed by the requirements of orthonorm
and completeness. The DWT reconstructed power spect
gives the correct values for the spectrum index,21.86.

D. Sampling

That the DWT estimator is less sensitive to sampling c
already be seen in Fig. 2, in which the spectrum is corre
reconstructed regardless the number of bins. Binning can
thought of as a kind of sampling.

d

e

FIG. 3. Reconstruction of a typical scale spectrum@Eq. ~3.9! and
Fig. 2#. k52pn/L is the wave number in length units. Shown in th
figure is the original distribution@Eq. ~3.9!# without any boundary
conditions~dotted line! and the power spectrum determined usi
periodic boundary conditions and zero padding.
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A more realistic example of sampling is the identificati
of objects from a density field. For instance, one can iden
overdense regions in the density field as objects. This n
distribution is a sampling of the original density field. Obv
ously, the new distribution will not be distributed in the sam
way as the original density field. However, it is known th
distributions constructed in this way are not different fro
the original field on scales larger than the characteristic s
of the sampling@1#. One can expect that a proper spectru
estimator will be able to reconstruct the original spectr
from sampled data on scales larger than the character
scale. Yet, different criteria for identifying objects, i.e., d
ferent samplings, will give a different mean density. Th
inevitably leads to the sampling problem for spectrum e
mators depending on the mean density.

Moreover, for real data, it is often necessary to sam
data in 1D and then try to reconstruct the 3D power sp
trum. If the density perturbations in 3D are statistically is
tropic with a spectrumP3(k), we have

P~k!52pE
k

`

P3~q!qdq. ~3.10!

This shows that the contributions from long wavelength p
turbations, or wave number less thank, are not important. If
the 1D spectrum can be approximated as a power law,

P~k!}k2a, ~3.11!

with a.0, the 3D spectrum can be reconstructed from
~3.10! as

logP3~k!5 logP~k!22logk1 log~a/2p!. ~3.12!

Using the DWT spectrumPj to replaceP(k), we have

FIG. 4. Reconstruction of power law spectrumP(k)5ka with
a522. Shown in the figure are~a! the original distribution with
last quarter bins set to zero,~b! the DWT power spectra from
log2Pj, ~c!, ~d!, and ~e! the spectrum reconstructed by the windo
Fourier transform with window size 4, 8, and 16 bins, respective
Once again,k52pn/L is the wave number in length units.
y
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.

logP3~k!5 logPj22logk2~ log2! j 1A1 log~a/2p!.
~3.13!

Figure 5 shows an example, in which the 3D spectrum
given by Eq.~3.9!. 20 1D distributions are generated fro
the 3D perturbations. The density fields are sampled by id
tifying the peaks in the density field as objects. Two differe
criteria are used. In sampling~1! the number density is
greater than that in sample~2! by a factor of between 2 and
3.

Figure 5 shows that the 3D spectra reconstructed fr
samplings 1 and 2 are the same. Figure 5 also shows tha
reconstructed spectra generally agree with the original sp
trum, but have a faster increase than the theoretical spec
as the scale increases, especially on scales close tok
520.75. This is because we have used a simple power
to describe the entire 1D spectrum@Eq. ~3.11!#. The long
wavelength perturbations are overestimated by a power
approximation of the 1D spectrum.

IV. AN APPLICATION: THE Ly- a ABSORPTION CLOUDS

A. Problem in Ly- a absorption cloud detection

Ly-a absorption line systems in QSO spectra come fr
intervening neutral hydrogen absorbers, or clouds. The
tribution of the Ly-a absorption lines in redshift space is
direct measure of the spatial distribution of neutral hydrog
clouds in the Universe@24#.

Our goal here is not to study the physics of the format
of the clouds, but to show that the power spectrum of
mass distribution traced by the hydrogen clouds can be
tected by the DWT estimator.

The Ly-a lines are much more numerous than other h
redshift objects, tend to be relatively less affected by se
tion effects, and cover a large range in redshift or spa
space. These objects should serve as good candidate
studying the cosmic mass distribution on large scales. Yet
far no power spectrum has been detected, especially
scales larger than 5h21 Mpc, whereh is the Hubble constan
in units of 100 km s21 Mpc21. This particular data set pre

.

FIG. 5. Reconstruction of the 3D power spectrum for samp
with samplings~1! and ~2!. k is now in inverse length units.
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sents several problems in detecting the spectrum using t
tional methods.

The first problem is that the mean number density of
Ly-a clouds significantly varies with redshift. This variatio
can be approximately described as

dN

dz
5S dN

dzD
0

~11z!g, ~4.1!

where (dN/dz)0 is the number density extrapolated to ze
redshift, andg;2 is the evolution index. In other words, n
mean density is available for calculating the two-point c
relation function. This makes detection of Ly-a absorption
clouds by the two point correlation function extremely dif
cult @24,25#.

The second problem is the complex geometry of the Lya
absorption clouds. Ly-a absorption line samples from differ
ent QSO spectra distribute over different ranges in reds
space, or different ranges in physical space. Moreover,
total number of the Ly-a lines are different for different
forest samples. How do we obtain estimates of the spect
from these very irregular samples?

As discussed above, both problems can be solved by
DWT spectrum estimator. One can regularize all samp
into the same range, say (Dmin ,Dmax), in physical space as
follows. For a forest sample in a spatial range (D1 ,D2), one
can extend it to a larger range (Dmin ,Dmax) by adding zero to
the data in ranges (Dmin ,D1) and (D2 ,Dmax). Thus, all
samples distribute on (Dmin ,Dmax). Since wavelets are local
ized in both configuration and Fourier spaces, the wav
transform in an interval (D1 ,D2) will not be affected by the
addition of data in the regions (Dmin ,D1) and (D2 ,Dmax).

B. Results

In order to check whether the above-mentioned proble
are really surmounted by the DWT estimator, two popu
and independent data sets of the Ly-a absorption clouds
were studied. The first was compiled by Lu, Wolfe, a
Turnshek~@26# hereafter LWT!. It contains;950 lines from
the spectra of 38 QSOs that exhibit neither broad absorp
line nor metal line systems. The second is from Becht
~@27#, hereafter JB!, which contains a total;2800 lines from
78 QSOs spectra, in which 34 high redshift QSOs were
served at moderate resolution. These two data sets
sampled differently. The LWT samples contain only lin
whose equivalent widthW is >0.36 Å. JB contains sample
with linewidths W.0.16 Å andW.0.32 Å. Their redshift
dependences are also different: LWT showed t
(dN/dz)0.3 andg52.7560.29 for lines withW.0.36 Å
while JB foundg51.8960.28 for W.0.32 Å andg51.32
60.24 forWth.0.16 Å.

Because the linewidthW depends only on the local env
ronment, statistical features, such as the power spectrum
large scales should be the same for the distributions sam
by linewidthsW.0.36, 0.32, 0.16 Å.

All samples were regularized as described above
range ofDmin52,300 h21 Mpc to Dmax53,300 h21 Mpc,
which corresponds to a redshift range of 1.7–4.1 in a
universe. The 1D spectra for LWT (W.0.36 Å!, JB (W
.0.32 Å!, and JB (W.0.16 Å! are plotted in Fig. 6. The
di-
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error bars are calculated from the ensemble of the QS
absorption spectra.

The 3D spectra can be constructed from the 1D spectr
the LWT and JB samples as done in Eq.~3.13!. The results
are shown in Fig. 7. As in Fig. 5, because the 1D spectra
approximated as a power law, the reconstructed 3D spe
should be a good estimate on small scales, but will h
large deviations on large scales.

The data sets contain large errors, and therefore, the D
estimated spectra contain uncertainties. Nevertheless, s
conclusions can already be drawn. Figures 6 and 7 cle
show that the amplitude and shape of the DWT estimated
and 3D spectra for all data sets are very similar. T
strongly implies that these features are common propertie
the spectra of the Ly-a absorption clouds. That is, thes
features should be given by the physics of the Ly-a cloud

FIG. 6. The 1D power spectrum for samples of LWTW.0.36
Å, JB W.0.32 Å, and JBW.0.16 Å. For clarity, the spectra for JB
W.0.32 Å and JBW.0.16 Å have been shifted in the negativek
direction.

FIG. 7. The 3D power spectrum reconstructed from data LW
W.0.36 Å, JB W.0.32 Å, and JBW.0.16 Å. The theoretical
curve is the standard cold-dark matter model spectrum.
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formation, and not by the geometry or by the sampling of
data.

The errors at large scale are about the same as tha
small scales. This means that the DWT estimator can
formly detect the spectrum on almost all scales on wh
data are available. This cannot be achieved by the two-p
correlation function, which generally overlooks structures
large scales because autocorrelation amplitudes on l
scales are small, and structure cannot be detected whe
amplitude is comparable with the uncertainty of the me
density.

V. CONCLUSION

Throughout most of this work the conventional definitio
of the spectrum was used, i.e., the spectrum with respec
the Fourier basis. There is no particular reason to do this
one can define the spectrum with respect to any comp
and orthonormal basis.

Theoretically, the spectrum based on any complete or
normal basis decomposition is equivalent as long as the
an ensemble of realizations of the random density field. P
tically, they may not be completely equivalent because r
data are often incomplete as it is constrained by its finite s
and, additionally, an ensemble of realizations may not
, A
L.
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available. Thus, different bases might measure different
pects of the density fields.

A good way to see this is to look at how different bas
chopup phase space. In phase space, all orthonormal b
decompose the space into elements with productDx Dk
>2p. However, different bases distribute the product diffe
ently. The ordinary Fourier transform hasDk→0,Dx→`,
windowed Fourier transforms haveDx5Dk5const, while
for the wavelet basis, the elementsDx,Dk adapt to the scale
being analyzed@16#. The wavelet basis is the best choice
the localization of bothk andx is crucial.

Indeed, we have shown that the DWT spectrum estima
is an efficient and reliable tool for detecting the spectrum
density perturbations from samples with a complex geo
etry. We have also shown that the DWT can estimate
power spectrum regardless of how the underlying den
field is sampled. We applied the DWT estimator to re
samples of the Ly-a absorption clouds, for which the spec
trum has not been previously detected. The results show
the power spectrum of Ly-a absorption clouds can stably b
detected on scales 2–100h21 Mpc by the DWT estimator.
Therefore, the discrete wavelet transform power spectr
estimator is an important and necessary supplement to
rently existing spectrum estimators.
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